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1. INTRODUCTION 

In the last decade, a growing effort has been devoted to the study of structural properties 
and phase behavior of polymer blends and copolymers in bulk and in solution using X-ray, 
laser and neutron scattering techniques. 1-4 The chemical nature of polymers involved in the 
mixture and the type of information one seeks determines the choice of the technique to be 
used. For example, long range fluctuations and slow dynamics are conveniently probed by 
light scattering, whereas neutrons and X-rays are more suitable for probing the internal 
properties of polymers or the ordered structures of their phases and the characteristic motion 
of chains within these phases. In this paper, we are interested in the properties of polymer 
mixtures and copolymers in homogeneous single phase states. We will also look into some of 
the scattering properties governed by critical fluctuations when the mixture, although remain- 
ing stable and homogeneous, is driven gradually close to the stability limit. This is the case 
when the temperature T is close to the critical value T, where E = 1 T - T, 1 /T is very small and 
the mixture undergoes phase separation. 

For a pure blend, if the chemical nature and the molecular weigths M, and Mb of the two 
polymers A and B are known, one needs to know the radii of gyration R,, and R,b and 
the interaction parameter X&, to achieve a first order characterization of the properties of 
these polymers. The above scattering techniques are standard tools which deal with this 
problem. 

In the case of multicomponent mixtures, the number of parameters increases quickly with 
the number of components. Consequently, the interpretation of scattering data becomes more 
difficult unless one simplifies the analysis by choosing polymers that fulfill special condi- 
tions. A typical example is given by a ternary mixture in which a low molecular weight 
solvent is added to the polymer blend. The easiest way to deal with this problem is to use the 
pseudo-binary description assuming that the effect of solvent is simply to swell the two 
polymers but adds no further complication to their properties. In this description, the ternary 
mixture is considered as a blend of homopolymers A and B which is characterized by an 
effective contrast factor (v, -v ) b & = cp(v, - v,,)2and an effective interaction parameter 
xeff =x&(0, where v, - vb represents either the difference of the increments of refractive 
indices (&Z/&Z,) - (an/&b) if one uses light scattering, the difference of the scattering lengths 
between the monomers if one uses neutrons, or the difference of electron densities for X-rays; 
cp is the total volume fraction of polymer, and x& the Flory-Huggins interaction parameter 
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between polymers A and B. This is an attractive simplification, but it is valid only under 

certain conditions and we shall discuss this point in more detail later. 

The properties of multicomponent polymer mixtures, in the limit of the zero scattering 
angle, were discussed a long time ago by Stockmayer.’ Using a thermodynamic method, 

Stockmayer derived a general formula for scattering in the forward direction, which is 

consistent with the Flory-Huggins free energy model6 when applied to the case of ternary 
mixtures of two polymers and a solvent, or two solvents and a polymer. For several dec- 

ades,lm9 this formula served as the basis for the interpretation of light scattering data and the 

thermodynamic behavior of multicomponent polymer mixtures. Its generalization to finite 

scattering angles has been worked out relatively recently on the basis of the chain of single 

contacts model. 3~10 This is an extension of Zimm’s single contact approximation” which 

includes interactions between either similar or different chains. The final result provides a 

mean field evaluation of the scattered intensity for a mixture of two polymers and a solvent. It 

accommodates for the cases where the contrast with the solvent vi - vs, the molecular weights 
and the interaction parameters of the polymers are, in principle, arbitrary. Within this ap- 

proximation, it becomes possible to account for the effects of interactions in the whole range 
of concentration going from the dilute to the semi-dilute regimes and eventually overlapping 

with the concentrated region. It gives the correct bulk result if one takes properly the limit of 

‘ps = 0. Some remarks concerning the extension of the random phase approximation (RPA) 

using the blob model and renormalization group theory 12-14 will be made in a later section. 

In this paper, we focus our attention on mixtures having special optical properties which satisfy 

the so-called zero average contrast (ZAC) condition. This limit is also known in certain cases as 
the optical theta condition. l5 One of the first applications of the ZAC method to polymer 
mixtures was known as the high concentration method. This method was designed to extract 

single chain properties for a deuterated polymer in a matrix of identical but nondeuterated 
chains at high concentrations and using the small angle neutron scattering technique. “-‘* In the 

theoretical part of this paper, it will be shown that only in the ZAC is one allowed to treat the 

ternary mixture made of two polymers and a solvent as a pseudo-binary mixture with effective 

parameters as it was mentioned earlier. Several experimental examples are chosen to illustrate 

various theoretical predictions. For the case of incompressible blends, scattering radiation 
probes fluctuations in the order parameter which is the composition of the blend. If these 

fluctuations continue to grow, they may drive the system unstable and induce phase separation. 

The kinetics of phase separation in polymer blends is a well documented subject and a 

good level of understanding on the mechanism of spinodal decomposition has now been 

reached. ‘9-21 One cannot pretend that comparable knowledge exists for blends in the pre- 
sence of a low molecular weight solvent. For these ternary mixtures, at least two order 

parameters emerge, describing composition and concentration fluctuations. Yet another com- 
plication arises due to coupling between these two order parameters. It will be shown that fol 
symmetric mixtures satisfying the ZAC, such coupling disappears and the contribution of the 

concentration fluctuations to the scattered intensity vanishes. In this case, the treatment of 

ternary mixtures becomes very simple and the pseudo-binary description is justified. Further- 
more, the measurement of the scattering signal is due only to composition fluctuations and 

gives direct access to important quantities such as the polymer-polymer interaction para- 
meter and the self-diffusion coefficient. 

In the first part of this paper, some theoretical predictions concerning static and dynamic 
properties are made based on mean field approximations and in particular on the random 
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phase approximation (RPA). In the second part, these theoretical predictions are used to 
examine a few experimental examples of data obtained by the three major techniques: light, 
neutrons and X-rays. We have selected only a few examples concerning stable homogeneous 
mixtures that fulfill the ZAC condition. We consider in particular the systems: (i) ternary 
mixtures of two homopolymers and a solvent; (ii) diblock copolymers and a solvent; 
(iii) quaternary mixtures of three homopolymers and a solvent; (iv) polyelectrolytes in 
aqueous solutions with selective deuterium labelling. 

2. THEORETICAL PREDICTIONS 

2.1. Static scattering 

2.1.1. Scattered intensity and structure factors 

The theory of static light scattering of binary polymer solutions including the inter-chain 
interactions was put forward by Zimm, l1 who derived the expression for scattered intensity as 
a function of concentration and scattering angle. This equation was the starting point for 
the classical Zimm plot analysis which is a major tool for polymer characterization.** 
Zimm plots are performed routinely in major laboratories to characterize newly synthesized 
polymers and extract basic quantities such as the molecular weight M, the index of poly- 
dispersity M,IM,, the radius of gyration R, and the second virial coefficient A2, In the 
standard experimental notation, Zimm’s equation is given as: 

me/G) = l/P(q) + u244c (1) 

where 4, the amplitude of the scattering wave vector, can be expressed in terms of the 
wavelength h of the incident radiation, the index of refraction of the medium n and the 
scattering angle 0 by: 

q = 4nnsin(B/2)/X (2) 
For vertically polarized incident light, the constant K is: 

K = 4n2n2(dn/dc)2NJA4. (3) 
If one uses the neutron scattering technique, q has a similar expression as in eqn (2) except 

that the index of refraction n should be removed, and K replaced by (v, - v~)~, the contrast 
with respect to the solvent squared. In eqn (l), the second virial coefficient A2 is related to the 
excluded volume parameter v by: 

A2 = vN,,/2mg (4) 
where m. is the molecular weight of the monomer, N, the Avogadro number and /3 = 
l/KBT, KB is the Boltzmann constant and T the absolute temperature. The excluded 
volume parameter v is related to the effective inter-monomer potential u(r) or to the pair 
correlation function g(r) = e+@ through the binary cluster integral: 

d3r[l-g(r)]- d3r[l-e@‘(‘)]. 
.I 

This result can be expressed in terms of the monomer-solvent Flory-Huggins interaction 
parameter X,,6’23 via: 

v= b~WHl(llcps - 2Xms) (6) 



THE ZERO ADVANTAGE CONTRAST CONDITION 5.3 

where vi represents the molar volumes of the monomers A, B;.., etc. and the solvent S (i.e. 
i = a,b;..,s). 

Let us now go back to Zimm’s equation and consider the form factor P(q) which deter- 
mines the architecture of the polymer. Z’(q) can be calculated using the definition: 

N2P(q) = 2 < e’+“j > . 
11 

(7) 

Here, N = M/ma is the degree of polymerization, the symbol < ... > denotes the average 
with respect to the equilibrium distribution, and rii is the vector distance between monomers i 
and j along a chain. Assuming a Gaussian distribution for rij, and approximating discrete 
sums by integrals yields the Debye function: 

P(q) = 2(emU + r4 - 1)/u2 u=q2R;. (8) 

For practical purposes, another representation is frequently used for Gaussian chains: 24 

P(q) = (1 + U/3) - l (9) 

Besides its convenience, this approximation is quite good in the small 4 limit where 
qRg < 1. In the upper 4 range where qRg > 1, a slightly better representation would be to 
substitute l/3 by l/2 in the above equation. It is sometimes more convenient to use molecular 
quantities such as (N, v, (o) instead of their experimental counterparts (M, AZ, c). The relation-. 
ships between these two sets of parameters are: 

A2 = vN~, 124 M=Nmo c=cpp (10) 
where 

P =molvo 

is the polymer density. 
As an example of equations written in these two representations, one notes that Zimm’s 

equation in the experimental form is: 

Kc/Z(q) = l/M + 2A2c + q2R;/3M (11) 

and in terms of molecular quantities, it reads: 

l/S(q) = l/Np + v/[v:/v,*] + q2R;/(3Np). (12) 

As we mentioned earlier, this is the basic equation for the characterization of binary 
polymer mixtures using Zimm plot analysis. Two main assumptions were made to derive 
this result. The first one is to assume that the solution is dilute and any pair of chains can have 
only one contact point at a time. This is the single contact approximation. The second 
approximation is to replace 1 - 2A2Mc by l/(1 + 2AzMc) which means that 2A2Mc should 
remain small as compared to one. This substitution actually means that one includes in- 
directly higher order interaction terms. This observation probably helps to explain the validity 
of Zimm’s equation at concentrations far beyond the dilute regime.3,22,25 A characteristic 
concentration denoted c* determines roughly the border line between the dilute and the semi- 
dilute regimes. From the above considerations, an alternative definition of c* would be: 

c* = [2A,M] - ’ (13) 
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which can be compared with the classical overlap concentration c*: 14~25 

c* = M/[4?rNa,R;/3]. (14) 

Introducing the static swelling factor as, where R g0 is the radius of gyration of a Gaussian 
linear chain and u is the average monomer size, one can write the second virial coefficient A 2 

as: 

A2 =const.c~i/M~‘~. (15) 

The constant is equal to rrN,,/[9&&] and 

cy; = [R;/R&] R;,, =Na2/6. (16) 

In the vicinity of theta temperature, CY, is close to one and eqn (15) shows that A2 goes to 
zero as M- . u2 If the excluded volume interaction is strong, using R,-N3”, one finds that 

CtY,-MO? 

The second virial coefficient A2 has a much weaker dependence upon M and is consistent 

with the universal scaling law obtained by de Gennes: l4 

A -M-o.2 
2 (17) 

However, this result is slightly different from the one obtained by neutron scattering of 

polystyrene in a good solvent:26 

A 2 = 1.04 x 10-2M-o.254 (18) 

and for polydimethylsiloxane: 27 

&=0.71x 10-2M-o.25. (19) 

It was pointed out earlier that the theory of static scattering from multicomponent polymer 

mixtures was first developed by Stockmaye? using a thermodynamic method. The formula 

derived by Stockmayer describing the scattering intensity in the forward direction (q = 0) 

turned out to be consistent with the Flory-Huggins free energy model and de Gennes RPA in 
the case of homopolymer blends. These mean field theories lead to the same result which can 

be written as: 

Z(q = 0) = (v, - l+J2S(q = 0) (20) 

where the structure factor at q = 0 is given by: 

l/s(q= 0) = 1/[Nacp,l+ ~/F%,‘PI,~ - 2&b. (21) 

xab is the Flory-Huggins interaction parameter. If component B has a low molecular 
weight and can be considered as a solvent, Nb = 1 and the above formula reduces to Zimm’s 
equation at q = 0. On the other hand, the extension of eqn (21) to finite q is straightforward 
and can be implemented simply by including the form factors P,(q) and Pb(q): 

l/s(q) = UWad',kdl + 1/[Nb’PbPb(d- 2Xab. (22) 

For a multicomponent mixture, the scattering intensity one would obtain in a general- 
ization of Stockmayer’s theory to finite q is:3,28-30 

WI) = uTS(q)u (23) 
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where u is a column vector whose elements are the increments of refractive indices, the 

contrast factors or the electron densities, and uT its transpose. One can write the structure 

matrix S(q) for a multicomponent mixture within the RPA as:3,11,14 

S(q)_l =S0(q)-l +v. (24) 

If all the constituants of the mixture are homopolymers, the elements of So(q) are simply: 

SOi =Nicpipi(q) i = a, b, c etc. (25) 

The excluded volume parameters vii can also be generalized from eqn (6): 

vii=[v~~/v~l(1/‘Ps-2Xis) 

~~=[vi*v~/v~](l/~~-~~,-~~,+~~) if i # j. (26) 

This is a general formalism which is applied to various systems in the following sections. 

2.1.2. Ternary mixtures of homopolymer Alhomopolymer B/solvent 

In the case of a ternary mixture made of two homopolymers A and B and a solvent, eqns 

(23)-(26) yield: 

I(q) = (u, - Q)2(1/soa + I/% -2&s) + (ub - &)2(1/SOb + l/p, - 2Xbs) 

- 2(v, - u&tub - %)(l/‘i% - Xas - Xbs + Xab))/ 

This is a mean field result which is nevertheless useful for practical purposes. For example, 
the limit of thermodynamic stability is defined by det.S-’ > 0 and the spinodal equation is 

given by det.S-’ = 0. This equation provides a relationship between the volume fractions, the 

degrees of polymerization and the interaction parameters: 

(l/N&, + I/% -2X&h’Pb + I/% -2Xbs) -(l/%3 - Xas - Xbs - Xabj2 = 0. P3) 

Regarding the “optical conditions”, one can consider different cases depending upon the 

values of u,, ub and u,. Although our primary interest in this chapter is to examine systems 

fulfilling the ZAC, it is nonetheless useful to consider briefly the case where B is isorefractive 

with the solvent (i.e. Vb = u,). This case is commonly considered in the literature and it would 
be interesting to compare these predictions to those obtained under the ZAC. 

2.1.2.1. Polymer B isorefractive with the solvent - Let us consider an example in the 

following way. Starting from the binary solution of polymer A and solvent such as 
polystyrene (PS) and toluene at a given concentration, let us add to this mixture the 
second polymer B which is isorefractive with the solvent, say poly (methyl-methacrylate) 
or PMMA. A question one could ask in this hypothetical system is to what extent PMMA 
modifies the scattering properties of PS. Although the radiation probes directly the 
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fluctuations in the concentration of A, the scattering signal should be nevertheless strongly 
influenced by the presence of B in the solution. The scattered intensity Z(4) is proportional to 
the partial structure factor S,,(q) which can be easily obtained from eqn (27): 

l/&,(q) = l/N&Q,(q) + v,, - v~~(Pdv~pb/(l + VbdVbV)bPb(d) (29) 

In the experimental notation, the scattered intensity Z(q) is proportional to S,,(q) and is: 

K&ic,l~(q) = l/P,(q) + ~2,Ml a c - ~;ab”a~b%icb~b(d/(l + uZb”bcbpb(d). (30) 

Clearly, the third term in the right hand side (RHS) of this equation describes the effect of the 
invisible polymer B. Using the approximate form of P(q) in eqn (9), one can write this result 
in terms of an apparent second virial coefficient A2a,ap and an apparent radius of gyration 

(31) 

A 2a,ap and R ga,ap are directly accessible from the Zimm plot analysis. Introducing the overlap 
concentration ct: = (u2&fb)- ‘, one can express these quantities in terms of the interactions 
between species in the mixture. For example, the reduced apparent virial coefficient is found 
as: 

&ap/A2a = 1 - 2A:,bMb(cb/c~)/[Az~iA26(1 + cb/ct)I. (32) 

This quantity may be reduced substantially if cb is large as compared to ct. The asymptotic 
limit where cb >> ci is 

&a,arl&a = 1 -&b/&&b. (33) 

The matrix (PMMA + toluene) behaves as a theta solvent if A2ab = JAx and becomes a 
bad solvent if A2ab > dA=. In the dilute range (i.e. cb < c*b), the reduction of the 
apparent quality of solvent is proportional to c,,lci as shown by: 

A2a,ap/A2a = 1 - [A~,b/(A2~2b)l(cb/c~). (34) 

A similar analysis can be made for the apparent radius of gyration one would obtain from the 
Zimm plot. 

The problem is entirely different if chains A and B are linked together to form a diblock 
copolymer A-B. Unlike homopolymers, the bare structure matrix has a non-zero off- 
diagonal element: 

SOabkd =sOba(d =dl --#‘f+abkd (35) 

which describes the intra-chain correlations between species A and B. The form factor P&,(q) 
can be calculated directly or simply deduced from the geometrical relationship:3 

p(q) =x2&(q) + (I -x>2pb(d + tit1 -dpab(q) (36) 

where P(q) designates the total chain form factor and x the composition of monomers A 
within the chain (i.e. x=N,/N, N=N, + Nb). For Gaussian chains, P,(q), P,(q) can be 
described by the Debye function using u, =q2aiNa/6 and ub = q2&Vb/6, respectively. For 
a Gaussian chain, a direct calculation of P&,(q) gives: 

P,b(q)=(l-e-ua)(l-e-Ub)/U,Ub. (37) 

Following the treatment in the homopolymer case, it would be interesting to consider 
briefly the case where ub = u, and B is isorefractive with the solvent. The relevent structure 
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factor is S,,(q): 

L(q) = L%,(q) + h&%hdl/ 

with 

L1 + %tSOa(d + VbbSOb(q) + 2vabsOab(d + (%‘aaVbb - vib)~O(ci)l 

So,(q) =x2NPK(q) 

sOb(d = t1 -x)2N’s@b(d 

SOabkd =x(1 -#‘#ab(d 

MO(q) = sOa(dsOb(d - S0ab(d2. 

(38) 

(39a) 

(39b) 

(40a) 

(40b) 

In the reciprocal form, one has perhaps a more appealing result: 

I/&,(q) = l/So&) + vzl, 

- [v:bsO,(d~O(d - I.‘bb$abkd - %ib~Oa(d~Oab(d1/ 

[~Oa(d(~O&d + vbb~O(d)l. (41) 

Letting So&q) = 0, one recovers the result for the homopolymer mixture. Furthermore, in 
the forward direction, noting that ASo(q = 0) = 0, one obtains: 

x2&l&(O) = I+ vcq, apX2NP (42) 

where the apparent excluded volume parameter for the copolymer ~,,r,~r is: 

vmP, ap = [x2& + (1 -x)%bb + &( 1 - x)v,,,]/x2 (43) 

which is similar to the case of a single homopolymer in a solvent with an excluded volume 
parameter which takes into account the connectivity of chains and the interaction of unalike 
monomers v&. We shall come back to the copolymer problem shortly. We conclude this 
section by noting that for the corresponding homopolymers, the result is: 

x2&$%,(o) = 1 + Vhom, a$Np (44) 

(45) 

2.1.2.2. Homopolymers A and B in a solvent under the ZAC - One of the pionnering 
applications of the ZAC to ternary mixtures comprised of two polymers and a solvent 
using light scattering was due to Fukuda et a1.15 These authors used a different 
terminology referring to this condition as the optical theta condition. In their treatment, 
Fukuda et al. considered only the forward scattering at q = 0 and the dilute limit 
assuming that (O~ and (ob are small compared to (0: and (0:. They obtained the forward 
scattering intensity in the form: 

-2[(?i - ~,k&k,~b + tub - ~s)vbb’pflbI[(~a - &)%Na + (ub - d(P&bl (46) 
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and their motivation was to propose a new method for the measurement of the interaction 

parameter &b which would be independent of the polymer-solvent interaction parameters xas 
and Xbs. In the limit which they referred to as the “optical theta”, one has: 

(u, - %)%N, + (ub - d(Pdvb = 0. (47) 

Substituting this into eqn (46) yields: 

~(~=O)/~~=(u,-~,)2x2+(ub-us)2(1-~)2 

- &ab(% - dub - h)x2t1 --n12’@ (48) 

This result suggests that the variation of S(q = 0)/p vs cp gives a linear decrease with a 

slope that is proportional to x&,, regardless of the polymer-solvent interaction parameters xas 

and Xbs. This procedure was used by Fukuda et al. to measure x& for mixtures of PWPMMA 
in bromobenzene with different molecular weights using static light scattering. The general- 

ization of this procedure to finite q and finite concentration can be achieved only for symme- 

trical mixtures assuming equal degrees of polymerization, form factors and interactions 

with the solvent in addition to a 50/50 composition: 

N,=hrb=h’ p,(q) =pb(q) =pkd Xas=Xbs=X,jX=1/2. (49) 

These conditions imply that the bare structure factors are equal 

&,, = &,,, = se = N+d=(q)/2. (50) 

The excluded volume parameters of A and B are the same 

vaa=v&=V 

The relationship between x& and the excluded volume parameters is: 

xab = vab - tv,a + vbb)/2. 

(5la) 

Wb) 

Combining these equations leads to: 

%)/(02 = [(u, - %)‘+‘a + (ub - usk’bl*h’~(4)/[1+ vN@(q)l 

+ {[(Ua - Us)% - cub - %hl/d2w%)/[1 -2XabXcl -.wPwl. (52) 

If the average contrast is zero, one has: 

(u, - u,)(P, + (ub - %)‘pb = 0, (53) 

and the structure factor S(q) becomes 

5(q) = [(n, - ~t,)/2l*N~%?)/[l- 2xab’px(1 -X)Np(dl. (54) 

This result is similar to the signal one would obtain from a pure blend with an apparent 
contrast factor (u, - u&p = cp(u, - ub) and an apparent interaction parameter xap = p&b. Both 
quantities are reduced by the presence of solvent. The decrease in the interaction parameter 
means that the blend shows an enhanced compatibility in the presence of solvent. 

Comparison of eqn (47) and eqn (53) shows that the ZAC, unlike the optical theta condi- 
tion, does not involve the degrees of polymerization. However, if the polymers have the same 
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degree of polymerization, the ZAC and the optical theta conditions become identical. It is 

worth noting that at q = 0, eqn (54) gives the same result as Fukuda et al. although the latter 

was derived only in the limit of small concentrations. For symmetrical mixtures, this con- 

straint on the concentration regime does not exist and the same procedure can be used to 
measure the interaction parameter. This will be demonstrated with a few practical examples 

which we shall consider in the experimental section. 

2.1.3. Quaternary mixtures under the ZAC 

Recently, Strazielle et aZ.31-33 reported static and dynamic light scattering data from 

polymer mixtures of PWDMWPMMNtoluene. The increment of refractive index of PMMA 

in toluene is approximately zero 

&r/dcpMMA = 0 

meaning that this polymer is not visible for the probing radiation. On the other hand, PS and 

PDMS have increments of refractive indices approximately equal in magnitude with opposite 

signs: 

Wacps = an/acpDMs. 

The ZAC is satisfied if the composition x = (pps/((pps + ~rDMS) is l/2. In this case, the intensity 

one measures is directly proportional to the structure factor S(q): 

S(q)/(P2 =&,(4)/d +&dq)Id - 2s,b(q)IPa% (55) 

where Sij(qj (i, j = a, b), are obtained from the inversion of the matrix in eqn (24). Since we 

are interested in symmetrical mixtures, we have xcs = xas in addition to eqn (49) which means 

that PMMA has the same interaction with toluene as PS and PDMS. For convenience, the 

subscripts a and b will refer to PS and PDMS, respectively, whereas the quantities referring to 

PMMA will be primed. Hence, the matrix equation becomes very simple: 

i 

W?-l+v V+Xab V 

s-l(q)= V+Xab sow+v Vfxab . (56) 

V V+&b S'0(#+v : 

The bare structure factors So(q) and Sro(q) are: 

So = (4) = N@(q)/4 S’o(q) = cp’N’P’(q) (57) 

and S, can be obtained from the inversion of the above matrix. Substituting the results into 

eqn (55) yields: 

p/s(q)= ~~~/~O~~~~~~+2v~O~~~+vSO'~~~-~ab~~ab+2v~~O~~~~~O~~~+~O'~~~~~/ 

[2(1+2vSO(q)+vsO'(q))-Xab(Xab +2V)SO(q)SO'(q)+2XabSO(q)l. (58) 

In obtaining this result, we have allowed the properties of PMMA to be different from 

those of PS and PDMS in order to cover a more general case. Introducing an apparent 
interaction parameter and a correlation length ,$, one can put the result in the form: 

cplS(q) = (PIG! = ON1 + q2t21. (59) 
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The structure factor in the forward direction S(q = 0) is such that: 

V+(4 = 0) = 4/N - 2pxap. (60) 

The apparent interaction parameter is: 

xap=xab[l+(xab/2+v)(N’p +~'cp')1/[1+(xa~/2+~)(~-xadV'(~'/2)N~+v~'cp'l (61) 

and the correlation length f is given by: 

t2 = [R;/31[1 -3~2xabIxo$lI[~ -x,/x01 (62) 

where x0 is the critical parameter in the mean field limit: 

x0 = 2/NF7 

and the length L is defined by: 

L2 = [AB - CD]/C2 

with 

A = 1 + (v + xa,,/2)[Ny, +N’(p’] 

B = (v + xab/2)NqR;/3 + vN’p’Rgr2/3 - (v + xab/2)xaJ$N’p’(R; + Rg’2)/6 

C = I+ (v + xa1,/2)Nv + Kv - xadv + xa1,/2Ph7/2Wd 

D = (v + &2)[NqR; + N ‘p’Rs’*]/3 

One observes that the scattered intensity grows more rapidly when the concentration of 

PMMA increases. However, this increase in scattering is more important as q tends to zero 
indicating that the fluctuations of long wavelengths have the dominant contribution to the 

scattering. The critical concentration cp K, at which phase separation via spinodal decomposi- 

tion occurs, is lowered by an amount proportional to cp’. The critical concentration can be 

evaluated from the spinodal equation which is the condition under which the scattered 
intensity diverges or det.S-l(q = 0) = 0: 

N(x/2 + v)& + 2[(x/2 + v)N’+J - v/x]qK -2(1 t vN’cp’)/Nx = 0 

The resolution of this equation yields: 

‘~~=~o~{~/~~+~~~~~~~~~)I~x+~~~~+~x~~rp’/~~~l~’~} 

(63) 

-N’(p’/N = POK -N'(p'/N (64) 

where (DoK is the critical concentration in the absence of PMMA. 

'POK=2/N~. (65) 

Equation (64) indicates that (OK shifts towards smaller values when the amount of PMMA is 
increased. An estimate of this shift is given. In the next section, we discuss the properties of 
diblock copolymers in solution. 
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2.1.4. Solutions of diblock copolymers AB under the ZAC 

An analysis similar to the one given above for homopolymer blends can be applied to 

diblock copolymers AB in a solvent under the ZAC. First note that at q = 0, the diblock 
appears as a single homopolymer, its internal structure cannot be resolved, and the procedure 

used by Fukuda et aE. in the case of homopolymers to measure the x-parameter is not 

applicable here. One needs to consider the scattering at a finite q in order to explore the 

internal structure of the copolymer and to have access to the interaction parameter for 

microphase separation. For simplicity, we limit ourselves to the case of a symmetric copoly- 
mer in which the two blocks A and B have similar dimensions. In this case, the scattered 

intensity takes a simple form making a direct evaluation of the x-parameter feasible. This can 

be shown by first considering the general form of the scattered intensity for a diblock AB in 

solution: 

I(q) = {(u, - u,)2&,(~)/A’%(~) + Vbbl + cub - %)2[sOb(d/~O(~) + %I 

+ 2(t3 - dub - us)[SOab/~O(d - Vabl~/~[SOa(d/PSO(~) + Vbbl 

x [~Ob(d/as,kd + %a] - [sOab/psO(d - %b12h (66) 

This result is to be compared with eqn (46) for the homopolymer counterpart. The bare 

structure factors for this system have already been defined in eqns (39) and (40). The forward 

scattering intensity Z(q = 0) has been given in eqn (2) and eqn (43) in the case where block B 
is isorefractive with the solvent. Here, the focus is put onto the diblock copolymer under the 

ZAC. For a symmetrical diblock under this condition, one has a direct access to the x- 

parameter from the measurement of Z(q): 

I(q) = [(u, + ub)/2 - d2~d%)/[1 + (v+ x/2)@~k)l 

+ [(h - ub)/212Ndp1,2(d -%dl/{l - ?tabNdP1/2(d -%?)1/2). 

In the ZAC, u, + ub = 2u, and Z(q) becomes: 

(67:) 

(u, - ub)2/z(d =4/[~$@1/2(d -%))I -2&b. (68) 

The plot of Z(q) versus q2 shows a maximum at the wave vector q*-l/Rs and the critical 
parameter x = ib for which Z -l(q = qm) = 0 is obtained from: 

&%:b =2/[h,2h*) -ph*)l = 10. (69) 

Hashimoto and co-workers34 performed a comparative study of the scattering from block 

copolymers in solution using both eqn (67) and the pseudo-binary treatment based on Lei- 

bler’s formula with apparent parameters. They came to the conclusion that under the ZAC, 

both models predict similar results. Hashimoto and co-workers34,35 also performed X-ray 

measurements under this condition and found a good agreement with eqn (67). This point will 

be discussed further in the Section 3 of this review. 

2.1.5. Critical fluctuations and the scaling behavior under the ZAC 

In this section, we discuss the scaling behavior of static and dynamic scattering properties 
of ternary mixtures of polymer A/polymer B/solvent in the vicinity of the critical temperature. 
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For reasons that will become clear shortly after, the scattered intensity I(q) is written in terms of 
a new structure matrix S(q): 3,29330a36 

Z(q) = UTS(4)“. (70) 

s(q) is obtained from S(q) by the transformation A 

S(q) = fiTS( (71) 

with 

1 l-x 
A= 

[ 1 1 . 
(72) 

-X 

Combining eqns (70)-(72) yields: 

s SC, 
S(q)= cc 

[ 1 S Sxx xc 
(73) 

where S, and S,, are the structure factors for concentration and composition fluctuations, 

respectively, whereas S,, = S, is the partial structure factor for the coupling between them. 
One obtains these quantities as combinations of the Sijs: 

&c(q) =S,&) +sbb + ~ab(d, (74) 

&xkd = c1 -&u(d +x*sbb(d - tic1 -x)‘%b(q) (75) 

S,,(q) =&&I) = (l -x)[S,,(q) + sba(dl --@bbkd + &bkdl. (76) 

Substituting into eqn (70) yields: 

I(q) = [x(v, -i%) + (1 -x)(vb -v,)1*&,(d + [va -vbl*&&) 

+2[dva -vs) + (1 -x)(vb -v,)l(va -~b’b)‘%c(~)~ (77) 

For a symmetrical system, one has S,,(q) = Sbb(q) and Sab(q) =S,,(q) = 0. One observes 

that the coupling between concentration and composition fluctuations vanishes when x 

= l/2 and S, = S,, = 0. The matrix s(q) becomes: 

S(q) = 
&t(q) + sbb(d + ~abk) 0 

’ 0 [S,,(q) +Sbbk) - 2sab(q)1/4 1 (78) 

In the ZAC, the first and last terms in the right hand side of eqn (77) vanish and the scattered 
intensity is directly proportional to S,,(q). Moreover, regarding the fact that we are interested 
in long range fluctuations with long wavelengths, one can use eqn (9) and write: 

(79) 

In the limit of forward scattering: 

&xk = 0) - ’ = 2(x0 - Xabh (80) 

5 keeps the same value as in eqn (62) in which we let cp’, the concentration of the third 
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polymer PMMA, be zero, or L = 0: 

t2 =R9[3(I - XablXdl. 

Instead of using the x-parameters, these results can be written in terms of the temperatures T 

and T,, by using the usual temperature laws: 

&b = o/T + 0, xo = o/To + 0, (82) 

where (11 and p are constants independent of T representing the enthalpic and entropic con- 

tributions to the interaction parameters, respectively. Introducing E, one can express the 

results in terms of the scaling laws: 

SX,(~=O)-1 =2c~/T~s-~, (83) 

(84) 

Showing the divergence of S&q = 0) and ,$ near the critical temperature with power laws 

governed by the exponents y and V. In the present mean field description, the critical ex- 

ponents are y = 1 and v = 0.5. In the Ising model, the divergence occurs but with differents 

exponents which are of the Ising type y = 1.23 and v = 0.63. 
The above equations are derived within the mean field model and their validity becomes 

questionable in the vicinity of the critical region where strong fluctuations take place. Never- 

theless, the mean field results are useful in providing a first guess of what could be happening 
in the region of small E by extrapolating the behavior observed in the mean field region to the 

region where the scattered intensity diverges. The data obtained in the case of ternary 

mixtures indicate that the mean field approximation provides a good description for the 

scattering behavior far from To. As this temperature is approached and E becomes small, 

important deviations from the mean field results are observed and the extrapolation procedure 
becomes questionable. For example, the critical temperature at which S,,(q = O)- ’ = 0 is 
found to be different from To obtained by extrapolating the mean field data. We shall come 
back to these questions in the second part of this paper where experimental examples are 

discussed. 

2.1.6. Some remarks on renormalization group theory 

Using renormalization group theory arguments, one can represent the interacting polymers 
as new chains made of renormalized units or blobs. Each polymer is a chain of blobs and 

different species interact via an effective x-parameter. The scaling functions are obtained 

from the perturbation theory in terms of this interaction parameter and in the first order, 
the results are referred to as the zero loop RPA calculations. The results show that the 

effective x-parameter is a function of various quantities such as the degree of polymerization 

and the concentration. They indicate a better fit with the data of Fukuda et al. for PSIPMMAJ 
bromobenzene than the standard RPA.‘5,37 However, this approximation is not sufficient in 
describing other effects and the next order approximation, or the one order loop, is required. 
For example, computer simulations have revealed that the size of minority chains in a blend 

are contracted in comparison with their size in the theta state.38 This behavior cannot be 
predicted by the standard RPA or by its one-loop renormalized version. 



64 MUSTAPHA BENMOUNA and BOUALEM HAMMOUDA 

To understand some of these points, we consider only a few steps in the renormalization 
group theory approach. In the lattice model, assuming that monomers A and B and a solvent 
molecule occupy equal volume, one can write the free energy per lattice site:6 

FaIknT = (‘P,/&)ln% + (%/&)lnP~ + %ln’& + XasPaPs + Xbs’Pb’Ps + Xab’Papb. (85) 

In a dilute solution where cpS is close to one, using the excluded volume parameters 

V&l = I- 2XU, vbb = I- hbs and %b = I- Xas - xbs + xab, 

one can put the free energy in the form: 

F&J= (P,/~,)ln‘P, + (qb/Nb)h’Pb + -+‘aad +vbb’pi +2Vab(Pa(Ob)/2+ .... (86) 

One can write another expression for the free energy by defining a new lattice with a 
characteristic size E. The renormalized free energy in this coarse-grained system is: 

F,lknT=(a/~)3Fb,,b/knT+v,(a/~)3/2+ . . . . (87) 

This leads to a new description of the system which, following Brosetta et u/.,~’ is a 
mixture in which the chains can be visualized as successions of uncorrelated subunits or 
blobs having a molecular weight Mblob and occupying a volume t3 =Mblob/c. The mixture 
behaves as a pseudo-binary blend of A and B Gaussian chains. Calling N, the number of blobs 
per chain A, $ their composition, Nb and 1 - 4 the corresponding values for the B chains, 
denoting the renormalized interaction parameter Xbi,&, Brosetta et al. obtained the free energy 
in the coarse-grained system as: 

&,,,/kT = (6/N&$’ + [(I - d)/Nb&tl - +I+ Xblob$(l -4) VW 

which is the usual Flory-Huggins free energy expressed in terms of the interaction para- 
meter: 

Xblob = vab - (% + Vbb)/2. (89) 

In the dilute range, the blob size E is comparable to the mean radius of gyration R,. In a 
semi-dilute solution, 4 is simply the correlation length for monomer concentration fluctua- 
tions, and in the concentrated regime, it is comparable to the segment length u. Broseta et al. 
used these results to discuss the demixing transition of incompatible blends dissolved in a 
common good solvent. They found that near the demixing transition, composition fluctua- 
tions become dominant and are characterized by critical exponents of the Ising type. They 
observed that the scaling properties of polymers are slightly different from those of small 
molecules for where the scaling is described by Ising exponents with the Ficher renormaliza- 
tion corrections. They examined the scaling behavior of several quantities such as the inter- 
penetration function: 

AiC, = [I~/AEs - ($AA + Ad/21 (90) 
and the second virial coefficient Azab or the interaction parameter Xbi&: 

Xblob = m2 =A2ab - @2aa +A2bb)k (91) 

The scaling with the molecular weight M was found for the interpenetration function as 

A,J-M - o.22 (92a) 
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and for the interaction parameter as: 

Xblob -hf 
- 0.45 (92b) 

These exponents were calculated by a direct renormalization method to the second order in 
the parameter 4 - d (d being the dimensionality of space, i.e. d = 3). The exponent of Xbl& is 
6 = 2 + (Y - 3~ and is equal to 0.45 for v = 0.588 and ff = 0.22. Furthermore, &,I,$ is found to 
scale with the concentration as: 

Xblob -c 
0.3 

(93) 

where the exponent 0.3 is obtained from the scaling law ~43~ - 1) using Q! = 0.22 and v = 
0.588. Brosetta et al. observed that for weakly interacting polymers, the demixing occurs 
deep inside the semi-dilute regime where strong overlapping takes place. The critical con- 
centration at which the mixture undergoes phase separation ck was also examined and its 
scaling with the molecular weight was derived using the same method. The result is: 

CK-M-0’455. (94) 

In some of the experimental examples to be discussed in the second part, we will show how 
these results compare with the data. Other investigations based upon similar renormalization 
arguments have also been reported in the literature, in particular those by Onuki and Hashi- 
moto4’ and Schafer and Kappeler.41 

2.2. Dynamic scattering properties 

2.2.1. Equations of motion 

The dynamics of polymer blends have been the subject of intensive investigations in 
the last few decades. 3,14,24S2s,29,42 The main motivation of the early investigations was to 
understand the mechanism of single chain diffusion and to see whether the reptation model 
proposed by de Gennes l4 was able to explain the experimental data and the scaling behavior 
of dynamic properties such as the diffusion coefficient, the relaxation time and the melt 
viscosity with the molecular weight.39-41 These studies were performed with different meth- 
ods, and in particular, with photon correlation spectroscopy and the neutron spin echo tech- 
nique. 43,49 The experimental conditions were chosen in such a way that the polymer probe is 
visible to the incident radiation and the polymer matrix is invisible. Moreover, the probe is 
infinitely dilute in such a way that its chains do not interact with each other and one effec- 
tively measures the single chain diffusion coefficient. This subject is well documented in the 
literature.3P’4,29,43-49 Here, we are interested in systems fulfilling the ZAC since, in this,condi- 
tion, it is possible to have direct access to the interdiffusive process and to study the effect of 
incompatibility on the relative motion of chains of different species. Before examining this 
problem in more detail, we first present some general considerations on the dynamic scatter- 
ing of multicomponent polymer systems. 

Dynamical properties can be investigated starting from the generalized Langevin equation 
(GLE) for the monomer concentration fluctuation Gc(q,t): 29 

=kJ, G/at + wwq, 4 - du *P(q, t - u)Wq, u) =f (4, t), (95) 



66 MUSTAPHA BENMOUNA and BOUALEM HAMMOUDA 

Gc(q,t) is the fluctuation of the monomer concentration from the equilibrium mean value co: 

64% t) = 4% t) - [dW(q) 
where 6(q) is the Dirac delta function and V the volume of the system. One has: 

64% t)= c 
eiq.rj 

. 
all m0n0me1~ j 

(96) 

A similar equation can be obtained for the intermediate scattering function S(q,t): 

X?(q,t)/dt+Q(q)S(q,t)- 
s 
t du @(q,t-u)S(q,u)=O (97) 
0 

where S(q,t) is the two times auto-correlation function for the concentration fluctuations: 

S(q, t) = < 6c(q, t)bc*(q, 0) > . (98) 

In eqn (95) and eqn (97), Q(q) re p resents the first cumulant, (P(q,t) the memory function and 

f(q,t) a random noise. The memory function 

@(q, t) = <.f(% t)f*(% 0)’ 

is two times the autocorrelation function for the random noise. This function is extremely 

difficult to calculate and only for a few cases can one calculate S(q,t) including memory 
effects. 50-54 Fortunately, the initial decay of S(q,t) defined by the first cumulant Q(q) is often 

sufficient to characterize the dynamics of the system and analyse the quasi-elastic light 

scattering data from polymer systems. This is true at least in the early stages of the relaxation 

of the concentration fluctuations described by the time evolution of S(q,f): 

wq, e/at + Q(qP(q, t) = 0. (99) 

The time evolution of the mean concentration c,(q,t) also satisfies a similar equation. We 

shall discuss later how the first cumulant Q(q) can be useful for the study of the dynamical 

properties of polymer mixtures. 
For multicomponent mixtures, the above equations remain valid, but they must be written 

in matrix form. Let us first consider eqn (99) which we write for the intermediate scattering 

matrix S(q,t). Its solution gives the partial dynamic structure factors Sij(q,t) as a function of 

the first cumulant Q(q) and the static structure matrix S(q) = S(q,t = 0). It becomes a 
straightforward problem to characterize the dynamics of multicomponent mixtures within the 

mean field approximation neglecting memory effects if one knows Q(q). This matrix is 

defined in terms of the mobility matrix M(q) and the structure matrix S(q) as: 

a(q) = s2GJM(q)%) - ‘. (100) 

The knowledge of the mobility matrix M(q) requires the choice of a dynamical model. Using 
the Oseen tensor description or equivalently, the Kawasaki mode coupling model, one can 
write the elements of the matrix M(q) as:5s 

where 6, is the kronecker delta function, ri the friction coefficient of monomer i, and f(x) the 
so-called Kawasaki function:55’56 

f(x) =2{[(x2 + 1)/2X]logl(x+ 1)/(x- 1)l - 1). (102) 
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This result is written neglecting the screening of the hydrodynamic interactions. Should 

this effect become significant, which would be the case if the concentration is high and the 

overlapping of the polymers strong, then f(x) has to be modified. A possible modification is to 
use the screened Oseen tensor and instead of f(x), one would have to introduce a function of 
the two variables f(x,y) with x = k/s and y = l/qt;: 

f (x,y) =x2{[(x2 + 1 +y2)/4x]log[(x+ 1)2 +y2]/[(x- 1)” +y2] - l} (103) 

where ,$ is the hydrodynamic screening length which, to a good approximation, can be 

identified with the static correlation length introduced earlier. Borsali et al.” used this 

model of hydrodynamic screening to study the reduced viscosity of polyelectrolytes and 
its variation with polymer concentration. Richter et a1.58, and Rooby and Joanny59 used 

arguments based on a local q-dependent viscosity to study polymer solution dynamics in 

the presence of hydrodynamic interactions, Their model of q-dependent viscosity is consis- 

tent with the screening model invoked here. 

2.2.2. Dynamic scattering functions 

In the case of a multicomponent mixture, the dynamic scattering intensity Z(q,t) can be 

written as: 

Z(q, t) = “%(q, t)u. (104) 

The partial dynamic structure factors Su(q,t) should be obtained from the resolution of the 

approximate Langevin eqn (99) or its counterpart in the matrix form neglecting memory 

effects: 

S(q, t) = e -*%3(q). (105) 

If the mixture is made of two polymer species A and B and a solvent, this equation is easily 

solved and the result gives a bimodal distribution function: 

St(q, t) =Aijemrf’ +A’ijCrpf, (106) 

where r r,s are the frequencies of the fast and slow modes and are given by the eigenvalues of 

Q(4): 

I’f,s =O,, + (a& -Aa)“*, (107) 

f&i” = (Ql, + 322)P AQ = Cl115222 - Qt2Q2i. (108) 

The amplitudes of these modes A, and A’, are expressed in terms of the partial structure 

factors and eigenfrequencies as: 

A,, = [&sbb - rf ) - %bsbai/crs - rf ) A’,, =&a -A,,, (109) 

Aab = [&baa - rf ) - QabSbbi/(rs - rf ) Alab =&b -&b. (110) 

Abb and Aba can be deduced from these equations by interchanging the indices a and b, and 
s&,(q) = Sb,(q). As already pointed out, early experiments of quasielastic light scattering 
from ternary mixtures were made with compatible mixtures where one of the two polymers 
was visible and its concentration very small. Their main motivation was to understand the 
mechanism of chain diffusion in concentrated solutions (or in bulk) and to test whether the 



68 MUSTAF’HA BENMOUNA and BOUALEM HAMMOUDA 

predictions of the reptation model proposed by de Gennes could be verified. In this case, the 
scattering signal is proportional to S,,(q,t) which in general shows both the fast and the slow 
processes. However, the amplitude of the fast mode in this case is too small to be resolved 
from the autocorrelation function and one usually observes a single exponential decay cor- 
responding to the slow mode: 

&,(q, t) = &a(q)e-rst. (111) 

However, since this case is not a major case in our investigation of mixtures under the ZAC 
condition, we leave the problem at this stage and turn to the discussion of the dynamics of 
mixtures satisfying the ZAC. 

2.2.3. Dynamic scattering under the ZAC 

The dynamical correlation function under the ZAC is also characterized by a single ex- 
ponential decay function describing the slow mode. The study of the relaxation in time can be 
conducted in a similar way as in the static scattering. One finds that for incompressible 
mixtures, the dynamic scattering intensity Z(q,t) can be split into three terms: 

I(% t) = Ku, - u,)x + (ull - W -412sX(q~ 0 + (b - hJ2&& t) 

+ 2[(b - u&+ tub - h)(l -d(h - ~b)‘%c(% th (112) 

The first term in the right hand side of this equation describes the relaxation of the concen- 
tration fluctuations, the second is related with the composition fluctuations and the third term 
is the coupling between these two fluctuations. From an experimental point of view, one can 
have access to these contributions separately by choosing the “optical” conditions properly. 
In the absence of contrast between the two polymers, one has u, = ub and the second and last 
terms in eqn (112) vanish. The scattering in this case is entirely due to the concentration 
fluctuations represented by S,(q,t). On the other hand, if the average contrast 
(u, - u&x + (u, - u,)( 1 -x) is zero, the tirst and last terms in eqn (112) vanish and the scattering 
signal is entirely due to the composition fluctuations. In the case of a 50/50 symmetrical 
mixture, x = l/2, the coupling between concentration and composition fluctuations disap- 
pears and both S,(q,t) and S,(q,t) decay following single exponentials. One finds that these 
exponentials decay in different time scales and correspond to different mechanisms. For 
example: 

S,(q, t) -M&(q)/1 + 2A2McP(q)]e-rct (113) 

represents the relaxation of the fluctuations in the local polymer concentration. The other 
process is represented by the function S&q,t): 

Uq, t) -Mcp(q)l[l - x~~fYq)/21e-r” (114) 
which describes the relaxation of the fluctuations in the local polymer composition. 

In order to represent these processes, we have introduced a new notation and identified the 
fast process which is related with the concentration as the cooperative mode, and the slow 
process which is related to the composition as the interdiffusive mode. The amplitudes of 
these processes are: 

M?) = &(q, r = 0) =&A) =N@(q)l([I + (v + XP)Ncppkdl~ (115) 
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&(q) =&x(q, t = 0) =&x(q) -Nm)l[l - x~@(q)Pl. (116) 
The relaxation frequencies of these modes can be expressed as sums of two different con- 
tributions. The first one describes the short range frictional forces of the Rouse dynamics and 

the second one describes the long range hydrodynamic interaction. Assuming that the friction 
coefficients are equal, r, = rb = {, one finds: 

and 

F&I) = ~2~~lpl[s;sc(~) + l/(4x211) (117) 

I’&) = q2~~~l[~&(q)l + l/(4x27) 
s 

; dkf(Vq, &)&(k) (118) 

where the function f(x,y) is defined in eqn (103). 

2.2.4. Critical slowing down 

When the temperature of the mixture approaches its critical value, the amplitude and 

wavelength of fluctuating modes increase very fast and their relaxation slows down consid- 

erably. The amplitude and range of these fluctuations can be studied by static light scattering 
as we have seen earlier. To complete the analysis of critical mixtures, one could also examine 

the dynamics using either photon correlation or neutron spin echo techniques. Recently there 

has been a growing interest concerning the critical slowing down of composition fluctuations 
of homopolymer blends, for block copolymers and ternary mixtures of polymers and a 

solvent. 36Y60-71 A major question which arises from these studies is to know whether one 

observes a single or two critical relaxation modes and to understand what physical processes 

they represent. This question will be addressed in more detail below. 

3. EXPERIMENTAL EXAMPLES 

In this section, we discuss some examples of data obtained by light, neutron or X-ray 

scattering techniques on polymer blends and block copolymers in solution under the ZAC. 
We do not pretend to present a complete review of all the systems investigated, and we shall 

make a selection of the systems which, in our opinion, represent examples that best illustrate 

the theoretical formalisms discussed in the first part of this paper and which serve our purpose 
of focusing on systems that fulfill the ZAC condition. 

3.1. PSlPMMAlbromobenzene 

To our knowledge, this mixture is the first one to be chosen for investigating static proper-. 

ties using light scattering under the ZAC. This investigation was reported by Fukuda et al. l5 
who considered several mixtures characterized by different concentrations and molecular 
weights. Although eqn (46) was obtained in the dilute limit, it was nevertheless used for 
determining xab by light scattering for PS/PMMA/bromobenzene over a wide range of con- 
centrations. A similar procedure has been used by Ould-Kaddour and Strazielle72-74 for other 
mixtures under the ZAC. Some results are provided in Fig. 1. This figure shows the variation 
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. PS / PVAC I styrene 

Fig. 1. The variation of log x& as a function of loge for hv0 temarylrtixtures A: PS/PVAC/ 
styrene; . 72*73 v. PSjPMh4Afhromobenzene. 

Of xab as a fUUCtiOU Of COUCentratiOU c in a lOg--lOg plot for PSJPMMAlbromobenzene (Open 

triangles 0) and PS/PVAC(polyvinylacetate)/styrene (filled triangles A). In both systems, 
one observes the existence of a crossover at a certain concentration where the variation of xab 

changes qualitatively. This crossover concentration depends on the mixture under considera- 

tion and has been found to be much higher than the overlap concentation c *. This figure shows 
that below the crossover concentration, the interaction parameter xab remains essentially 

constant but above this concentration, the interaction parameter increases with c but not 

linearly. This increase follows a power law which is slightly system dependent. Examples 

of these power laws are:72-74 

0.53 
XabSC0,6 for PS/F’MMA/bromobenzene 

Xab-C0,7 for PS/PMMA/toluene 

xab -c for PS/PVAC/styrene. 

Using scaling arguments, de Gennes14 predicted the power law xab-c0.2swhereas 

renormalization group theory calculations’3,39,41,75 gave Xab -c”‘3. One observes that the 
experimental exponent is systematically higher than the theoretical predictions. This 

observation was first made by Fukuda et a1.l’ and later by Ould-Kaddour and Strazielle.74 
Moreover, the interaction parameter x.& depends on the molecular weight and this depen- 

dence seems also to follow a power law. This power law behavior has been examined for 
several mixtures fulfilling the ZAC and in particular for PWMhWbromobenzene. Figure 2 
shows a plot Of log[‘&&, = Xab] with respect to log M for several mixtures. Consistent with 
the renormalization group theory result of eqn (92) one observes a linear decrease indicating 

the power law: 

x.&, -M - o’45. (119) 

The concentration at which phase separation occurs through spinodal decomposition in 
these ternary mixtures is denoted ck. This critical concentration is sensitive to the average 
molecular weight of the polymers M. In Fig. 2, we also represent the variation of log ex as a 
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Fig. 2. The variations of log ck (top) and l~gAA~,~--logX~~ ($X!or~) as a function of log M 
for five different ternary mixtures. ’ 

function of log M for different systems satisfying the ZAC. Ould-Kaddour and Strazielle73 

reported the following power law obtained by static light scattering: 

ck = 44.6 x hf-o’58 PS/PDMS/THF 
ck = 43.6 x bf-o’59 PS/PDMS/toluene 

ck = 227 x M-O.~I PS/PMMA/benzene 
ck = 81.7 x h’f-“‘62 PS/PVAc/styrene. 

Equation (94) shows that these power laws are consistent with the renormalization group 

theory calculation. 

Besides the investigation of Fukuda et al. l5 on PSD’MMAlbromobenzene, the only further 
study of this system by light scattering was reported recently by Seils et uE.~~ These authors 
reported elastic and quasi-elastic light scattering measurements under the ZAC, at a fixed 

concentration and composition and with temperatures varying between 30 and 2°C. This 

mixture shows an upper critical solution temperature and, in the vicinity of 2°C it phase 

separates via spinodal decomposition. Static and dynamic measurements show two distinct 
regimes of temperature. Above 7°C the mean field model is found to describe the data quite 
well. Below 7°C substantial deviations from this mean field description are observed, in 
particular for the prediction of the critical exponents. The procedure of extrapolating the high 
temperature data to the point where l/Z(q = 0) = 0 gives a mean field estimate of the critical 
temperature To which does not seem to be correct. This means that the mean field description 
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Fig. 3. The variation of Z(q) as a function of q for PS/PMMA/bromobenzene. Curves 
from bottom to top correspond to decreasing temperatures.36 The insert represents an 

Orsntein-Zemick plot of the same data in the lower range of q. 

fails to represent the behavior of the system near its critical temperature where the fluctua- 

tions are very strong and the scattering is substantially enhanced. This enhancement of Z(q) 

when the temperature decreases is more significant in the small q range since the fluctuating 

modes in the long wavelength regime dominate the scattering. 
In the experiments of Seils et uZ.,~~ it is found that Z(q) should be split into two parts: a 

critical contribution which is sensitive to temperature and a non-critical part which remains 

essentially constant. We will refer to this constant value as the background component. The 
critical component dominates the scattering in the vicinity of T, and, therefore, it is this part 

which is important if one wants to extract the scaling properties or the critical exponents 

governing the scattering signal. Following the procedure used in the case of low molecular 

weight liquid mixtures, Seils et ~1.~~ suggested subtracting the constant background from the 

total signal to analyze the critical behavior. This background turns out to be more accurately 
evaluated from the quasi-elastic data. It is obtained from the amplitude of the faster mode 

emerging in the autocorrelation function at 7°C. This is the fastest of the two modes char- 

acterizing the time relaxation of the auto correlation function at 7°C and below and which 

seems to remain essentially unchanged with temperature. The background is subtracted from 
the signal to isolate the critical component reflecting the order parameter (or composition) 

fluctuations. 
Figure 3 describes the variation of the scattered intensity as a function of q at various 

temperatures ranging from 2.5 to 30°C. It shows clearly the sharp increase in the scattering as 
T decreases, especially in the low q range. The insert in this figure gives the same results in a 
different representation. It shows Z(q) as a function of q2 in the lower q range, which is more 
relevant for the study of the critical behavior. One observes that the scattered intensity 
deviates from the standard Ornstein-Zernick form as the temperature approches the critical 
value. This makes the extraction of the correlation length t somewhat ambiguous. Letting 
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Fig. 4. The variations of logZ(q = 0) and log 4 as a function of log E where E is 
defined with respect to To, the mean field critical temperature (U) or T, the Ising critical 

temperature (7, I). 36 

q = 0, one obtains the variation of the forward scattered intensity as a function of T and this 
variation can be used to extract important information on the critical behavior of the thermo- 

dynamic properties of the mixture. Considering the critical part of the scattering intensity at q 
= 0 as a function of T, one finds that, in the temperature range above 7°C the data follow 
quite well the mean-field description given in the early part of this chapter. 

As the critical temperature is approched, strong deviations from this picture are observed.. 

This was the case for polymer blends60-65 and for ternary mixtures in the presence of a loa 

molecular weight solvent. 36369-71 The inverse forward scattering intensity at l/Z(q = 0) 
decreases linearly with l/T in the upper temperature range and the extrapolation of this line 

gives a mean field estimate of the critical temperature To. But this estimate is found to differ 
substantially from the real critical temperature at which the forward scattering intensity 

effectively diverges. This temperature T, is sometimes referred to as the Ising critical tem- 

perature. 36360-7* The exponents y and Y governing the critical behavior of the forward scatter- 
ing intensity I(q = 0)-e- y and the correlation length 4--c- ” near T, have values different 

from the mean field predictions y = 1 and v = 112. 
Fig. 4 shows the data obtained by Seils et a1.36 on PSIPMMAibromobenzene representing 

log Z(q = 0) and log 4 as a function of log a. The filled squares and triangles are data for the 

intensity and correlation length obtained by defining E in terms of the Ising critical tempera-. 

ture .s = IT - T,i/T, respectively. The open squares are data for the intensity where E is defined 
in terms of the mean field critical temperature To. The scaling behavior of the inverse 
scattering intensity shows a transition from the mean field-like exponent y = 1.05 in the 

upper temperature range to the Ising-like exponent 1.19 near T,. If one defines the reduced 
temperature as E = IT - Toi/T (open squares in Fig. 4), one finds that y = 1.05 is very close to 
the mean field prediction in the whole range of temperature covered in these experiments. FOI 
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pure blends, Meier et a1.65 observed that if one defines t: in terms of the mean field critical 

temperature, one observes a transition in the exponent from mean field-like to Ising-like 

exponents. On the other hand, if one defines E in terms of the Ising critical temperature 

one observes the Ising exponent at all temperatures. This means that the results of Seils et 
al. 36 are in disagreement with those of Meier et al. 65 and one may be tempted to attribute such 

a discrepancy to the changes introduced by the low molecular weight solvent. However, this 
does not seem to be the case since similar discrepancies are also observed with the data of 

Miyashita et al. 69770 on the ternary mixture PS/PMMA/deuterated benzene. 

It is interesting to note that, although comprised of the same type of polymers as the one 
investigated by Seils et a1.,36 the latter system shows significant differences. The first major 
difference concerns the phase diagram which has a lower critical solution temperature 

(LCST) whereas the blend considered by Seils et aE.36 of similar polymers in bromobenzene 

is characterized by an upper critical solution temperature (UCST). Miyashita et aE.69’70 were 
able to analyze their data using a procedure similar to the one adopted previously by Stepanek 
et al. and by Meier et al.60261’63g65 for pure blends. They were able to characterize the scaling 

behavior of the forward scattering intensity without having to subtract the background con- 
tribution and found the Ising exponent y = 1.23. With regards to the correlation length, they 

observed that the variation of the scattered intensity as a function of q2 was consistent with 

the standard Ornstein-Zemicke plot. This allowed them to extract the correlation length E 

and find that its scaling behavior is also governed by the Ising exponent v = 0.63. 
In more recent work, Miyashita and Nose 69,70 studied in more detail the critical behavior of 

PS/PMMAldeuterated benzene and PS/poly(2-chlorostyrene)/deuterated benzene with differ- 
ent indices of polymerization and different concentrations. In addition to the scaling behavior 

of the forward scattering intensity and the correlation length in the crossover region, they 

analyzed the scaling behavior of the Ginzburg number using the universal crossover function 
obtained by Anisimov and Kiselev76 from the renormalization group theory. This means that 

the data for PS/PMMA/deuterated benzene reported by Miyashita and Nose did not seem to 

show the same complexity in the scattering behavior observed by Seils et al. 36 in the presence 

of bromobenzene. It is however worth pointing out that the increments of refractive indices of 

both PS and PMMA in deuterated benzene are finite implying that both polymers contribute 

to the scattering signal. One would expect to have not only a contribution from the concen- 
tration fluctuations but also significant scattering due to the coupled fluctuations of concen- 
tration and composition order parameters. It is not clear that these contributions should be 

neglected over the whole range of temperatures and concentrations covered in the experi- 
ments of Miyashita and Nose in spite of the fact that near the critical temperature, one would 

expect the critical composition fluctuations to dominate the scattering signal. 

In addition to the static light scattering investigation on PS/PMMA/bromobenzene, Seils et 
al. performed quasielastic light scattering experiments in the same conditions as those re- 
ported earlier. This combined analysis of the static and dynamic properties is very useful 
because it enables one to have a better insight into the peculiarities of this mixture when the 
critical temperature is approched. Consistent with the subtleties observed in the static data, 
other subtleties were found in the dynamic data in similar conditions. For example, 
measurements of the intermediate scattering function revealed that between 30 and 7°C 
the dynamics are governed essentially by a single mode describing a standard relaxation of 
the fluctuations in the composition of the A and the B polymers. The decay frequency of this 
mode is essentially proportional to q2 and its diffusion coefficient D’ is consistent with the 
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Fig. 5. The variations of the relative amplitudes of the fast and slow modes as a 
function of q at two different temperatures. Measurements made by quasielastic light 

scattering on PS/PMM&bromobenzene. 36 

RPA predictions given in eqn (118) where DI =I’Jq*. At 7°C and below, the dynamic 
scattering function shows a double exponential behavior indicating that at least two relaxa- 

tion processes characterize the dynamics of the mixture near the critical temperature. The fast 

mode is essentially the same as the one observed at higher temperatures and seems to remain 

essentially unchanged with T. The slower mode emerging at 7” undergoes a considerable 

slowing down as the temperature approches 2°C. Whereas the relaxation frequency of the fast 

mode has a q* behavior at all temperatures, the frequency of the slow mode shows a crossover 

from q2 to q3 behaviors characteristic of mode coupling effects. 

In Fig. 5, the variations of the relative amplitudes of the fast (I at 7°C and 0 at 4°C) and 

slow (0 at 7°C and 0 at 4°C) modes at the two temperatures 7 and 4°C are represented. At 
7°C one observes that in the lowest q range, the two amplitudes are comparable but the 

amplitude of the slow mode quickly decays to zero as q increases. The fluctuations with long 
wavelengths dominate the scattering as the temperature decreases and the fluctuations be- 

come weaker as one looks at shorter scales. At 4°C the relative amplitude of the slow mode is 

almost 100% in the lower q range and decreases only moderately as q increases. Likewise, the 
relative amplitude of the fast mode increases moderately with q indicating that the contribu- 

tion of the fast mode is more significant at short length scales. Seils ef ~1.~~ analyzed the first 
cumulant r(q) in the range below 7°C and observed that it has a q2 behavior describing the 

usual diffusive process. As the temperature is lowered below 7°C they observed a transition 

from r-q* to r-q3 behavior indicating a crossover due to long range mode coupling 
effects. This behavior is visualized in Fig. 6 where we have chosen to represent the normal- 
ized mobility nM,, or: 

rlM,, = IYq)&,(q)/[q*KJl = 1/p(q) = (1/4x*) 
s 

j dkf(klq)&,(k). (120) 

From this equation, one expects that qp(q) increases at small temperatures and small qs due 
to the modes coupling effects, the long range fluctuations and the viscosity enhancement. The 
continuous lines represent eqn (120) which is the theoretical prediction obtained from mode 

coupling theory. The insert shows the variation of r/q3 as a function of q in the same 
temperature range. At low temperatures, this figure shows that the mode coupling behavior 

r-q3 dominates in the whole range of q whereas in the upper temperature region, the q3 
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Fig. 6. The variation of the product mobility times viscosity as a function of q for 
PS/PMMA/bromobenzene at different temperatures ranging from 30 to 2~5°C. The 

insert represents the normalized first cumulant r/q3 for the same data.36 

behavior appears in the high q range only. The upturn in the curves is the signal for a 

transition to a purely diffusive process where r-q*. 
Yajima et ~21.~~ performed quasi-elastic light scattering on ternary solutions of d-PS/ 

PB(polybutadiene)/DOP. They observed two relaxation modes in the decay of the inter- 

mediate scattering function in the vicinity of the critical temperature. Their data show that 

the relaxation frequencies of the two modes have a q*-dependence and both slow down 
critically. However, no mode coupling q3 behavior was reported in these data. The fact that 

both modes are diffusive and subject to critical slowing down indicates a major discrepancy 

with known results. These controversies indicate that there is a need for more work along 
these lines to elucidate the effects of polymer interactions and the changes in the dynamics of 
polymer mixtures due to the presence of low molecular weight solvents. 

3.2. PSIPDMSlsolvent 

These polymers are characterized by a relatively high degree of incompatibility meaning 
that the interaction parameter x&, should show stronger effects on the thermodynamic, struc- 
tural and dynamic properties as revealed, for example, by the scattering techniques. The static 

scattering properties of PWPDMS in different solvents have been studied in detail by Ould- 
JSaddour and Strazielle. 72-74 These authors have chosen particular solvents that fulfill the 
ZAC such as toluene, chloroform, carbone tetrachloride, cyclohexane and styrene. The re- 
sults showing the variation of Kc/Z(q = 0) as a function of c for these mixtures are collected in 
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Fig. 7. The variation ofKc/I(q= 0)asafunctionofcforthe temarymixturePS(M=2.3 x lo’)/ 
PDMS (M= 28 x 105)/solvent at 25°C. Different symbols correspond to different solvents as 

indicated in the figure. 72-74 

Fig. 7 for polymers of molecular weights Mrs = 2.3 x lo5 and MPDMs = 2.8 x 105. All the 
plots show that Kc/I(q = 0) decays linearly with concentration c and from the slope, one 

can deduce the interaction parameter x& using the RPA result:72 

K’c,/AZ(q = 0) =A + &b&‘i%T (121) 

where the subscripts a and b stand for PS and PDMS, respectively and the other quantities are 
c = c, + cb the total concentration, y = c,/(c, + cb) the composition of PS and: 

A=[(v,-~,)~&y+v~~(l-y)]-r 

B = 2(v, - h)kb - vs)“aMbY(l -Y)vOaVOb/VOs~ 

The values of the interaction parameter deduced from this analysis at a fixed temperature 

vary from 0.028 to 0.053 depending on the solvent. This result is surprising since one would 

expect that under the ZAC, the interaction parameter would be independent of the solvent. 
This could be explained however by the fact that the ZAC condition is not strictly satisfied 
and that the two polymer-solvent interaction parameters are not rigorously equal and some 
preferential adsorption takes place. 

In their quasielastic scattering measurements on a symmetrical mixture of PS/PDMS/ 
toluene under the ZAC, Giebel et ~1.” observed a single relaxation mode in the time evolu- 
tion of the intermediate scattering function. From the analysis of their data, they concluded 
that this mode should correspond to the interdiffusive process consistent with the RPA 

prediction. 
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3.3. PMMAIPDMSlchloroform 

This is another example of incompatible mixtures which can be investigated by scattering 
experiments under the ZAC. Giebel et ~1.~~~~~ performed QELS experiments on such mixtures 
under the ZAC and considered a concentration range roughly between c* and 5c* at room 
temperature. At 5c*, the mixture remains homogeneous in a single phase and the critical 
concentration cK is slightly above 5c*. QELS measurements were made using different 
polymer compositions comprised between 0 and 100%. The results indicate that the auto- 
correlation function decays following a single exponential in the composition range between 
0.3 and 0.7. Outside this range, a second fast mode emerges and its behavior is characteristic 
of the relaxation of the concentration fluctuations. The auto-correlation function shows a 
bimodal distribution and the relative amplitude of the cooperative mode ac/(ac + a,) is 
displayed in Fig. 8 as a function of xpMW, the composition in PMMA of the blend. The 
dotted line represents the theoretical prediction based on the RPA and the squares are the 
data. The two inserts in this figure show typical relaxation time distributions obtained from 
Contin analysis of the auto-correlation functions. The insert on the right hand side is an 
example corresponding to values of x for which there are two modes and the insert on the 
left hand side represents an example of the intermediate region of x for which only the slow 
interdiffusive mode appears. 

It is interesting to note that this method allows one to extract important information on 
static and dynamic properties. It has been suggested as a method for extracting the values of 
the interaction parameter x& and the single chain diffusion coefficient D,.79-81 In a previous 

paper, 79 the self-diffusion coefficient D, was deduced from the data available in the literature 
assuming the stretched exponential model of Phillies. ** This made possible the measurement 
of xab without any adjustable parameter. Debrieres et a1.83 studied mixtures of succinoglican 
+ dextran in aqueous solutions by QELS for different concentrations and compositions. The 
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Fig. 8. The variation of the relative amplitude of the cooperative mode as a function of the 
composition of PMMA for the mixture PMMA/PDMS/chloroform. The inserts represent 

the results for two compositions obtained from the Contin analysis.7837938’ 
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data were analyzed using the formalism described in the theoretical section keeping the 

interaction parameter x&, and the single chain diffusion coefficient D, as adjustable para- 

meters. Their data were found to fit quite well with the theoretical prediction of the RPA and 
the fit was used to extract the values of xh and D,. Wang et aLa4 also used the same RPA 
formalism to describe their light scattering results from ternary mixtures of two homopoly- 
mers and a solvent. Their observation was that in the absence of intermolecular hydrody- 

namic interactions where M& = Mb8 = 0, the formulae simplify greatly and the data analysis 

becomes much more convenient. This simplification was possible regardless of the two 

polymers and not only for the case of mixtures fulfilling the ZAC condition. 

3.4. PSlPDiWPMW4ltoluene 

The knowledge of the properties of quaternary mixtures of polymers in solvents can be 

important from a fundamental point of view since this is a good example of a multicomponent 
mixture where the theoretical formalism such as the one presented earlier can be tested. It is 

also useful for practical purposes such as in the case of membranes where one usually deals 
with two polymers and two solvents with different thermodynamic properties. Static and 

dynamic scattering studies on ternary mixtures of PS/PDMS/toluene under the ZAC are 

known and it was interesting to explore the effects of a third polymer on these properties. 

An interesting case is one where the third polymer has the same index of refraction as the 

solvent such as PMMA and therefore does not contribute directly to the scattered light. An 
investigation of this system using elastic and quasielastic light scattering was reported by 
Strazielle et al. 31-33 over a wide range of concentrations and for different molecular weights. 

Figure 9 displays the variation of the normalized scattering intensity Z(q = 0,cp = O)/Z(q = 

0,~) as a function of the volume fraction of PS and PDMS, (p = (pps + (drums, for five systems 

characterized by different concentrations of PMMA. One can analyze these data either by 
using a pseudo-binary picture assuming that the PMMA introduces modifications of the 

properties of the solvent matrix. A more realistic theoretical scheme is the one in which 

PMMA, although invisible to the incident radiation, is still considered as a full component 
and formulae are derived where its properties are explicitly included. This formalism is 

described in the theoretical part of this paper and an apparent interaction parameter xapp is 

derived in terms of the concentrations, the molecular weights, and the other polymer-poly- 
mer and polymer-solvent interaction parameters. The continuous lines represent the theore- 

tical predictions as displayed by eqn (60) and eqn (61) and the values are found elsewhere.33 

With regards to the quasielastic light scattering data, one would expect a multimodal auto- 
correlation function for such a multicomponent mixture. Surprisingly enough, the analysis of 

the autocorrelation function by standard methods such as the Contin algorithm revealed that 

the autocorrelation function presents a single exponential mode. The relaxation frequency of 
this mode is found to be proportional to q2 over the entire experimental q range. The insert of 

Fig. 9 gives the corresponding diffusion coefficient D, for the five concentrations of PMMA. 

The extrapolation of DI to (o = 0 gives the self-diffusion coefficient D, which depends upon 
the volume fraction of PMMA. It is interesting to note that the curves representing the 
normalized diffusion coefficient DI/D, as a function of (o coincide with those of Z(q = 0, 

cp = O)/Z(q = 0,~) for the five concentrations investigated. This means that hydrodynamic 
interactions are not important, consistent with the theoretical scheme where the RPA and the 
Rouse model are combined. 
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Fig. 9. The variation of the normalized scattering intensity Z(q = 0, cp = O)/l(q = 0,~) as a 
function of cp for the quaternary mixture PS/PDMS/PMMA/toluene at five different con- 
centrations of PMMA. The continuous curves are the theoretical predictions and the 
symbols represent the data. The insert represent the variation of the diffusion coefficient 

DI showing that Rouse model is good and D, = Z(q = 0,~ = O)/l(q = 0,~). 

3.5. d-PSIPSIPVME 

As pointed out earlier, one of the first applications of the ZAC in polymer mixtures was due 

to Williams et a1.,16 Akcasu et al. l7 and King et al.‘* and was referred to as the “high 

concentration method”. This method shows that, provided deuteration effects on chain con- 

formations and interactions could be neglected, one could extract the single chain form factor 

or radius of gyration by performing small angle neutron scattering measurements without 
having to extrapolate to the zero concentration limit. 

First, let us consider a solution of deuterated and ordinary polymers having degrees of 

polymerization Nd and Nt, and concentrations cd and ch, respectively. In general, the coherent 
neutron scattering intensity Z(q), or the differential neutron cross section dC(q)/dO can be 

written in terms of the partial structure factors as: 

I(q) = U:Sdd(q) + U;~&) + 2UdUhSdh(q) + 2~dus~ds(q) + 2~hus~hskd + &s(d> (122) 

where ud, uh and u, are the scattering lengths per unit volume. Assuming that the mixture is 
incompressible yields: 

&,(q) = - &h(q) - sdbk) (123a) 

shs(q) = - shh(d - shd(q) (123b) 

sds(q) = - sdd(q) - shd(q). (123~) 
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Substituting these expressions into eqn (122) and using Sdh = Shd yields: 

I(q) = (ud - b)2sdd(q) + (“h - us)2shh(q) +2(ud - %)(uh - us)sdh(q). (124) 

The partial structure factor can be split into single chains P(q) and interchains Q(q) parts: 

sdd(q) =Nd(od[pd(q) + ‘PdQdd(q)l (125a) 

shh(d =Nh(oh[ph(d + ‘f’hQhhbd1 (125b) 

shd(q) = [Nd+‘dNh’ph11’2Qhd(q). (125~) 

The high concentration method assumes that deuteration does not change chain conforma- 

tions and interactions: 

p(q) =pd(q) =ph(q) 

&&I) = &h(S) =&d(q). 

Introducing the structure factor 

S(q) =%I) + vQ(d VW 

one can write the scattering intensity as: 

Z(q)=[<u2> - <u2>]N$P(q)+ <u2>N$S(q) (127) 

where Nh = Nd = N, 9 = (od + ph and the average contrast factors are: 

< u ’ = (ud - u&d/+ + (uh - u&h/$, 

< u2 > = (ud - u,l2 ‘Pd/4 + (uh - %)2ph/6 

Equation (127) can be written as: 

I(q) = [ud - vh12((Pd(Ph/62)p(q) + < ” >2 NG(q). (128) 

This shows that the form factor P(q) and the structure factor S(q) can be obtained by perform- 
ing two measurements where (od/(oh is varied keeping $ = ‘& + ‘Ph constant. The conditions 

for the high concentration method are similar to those of the ZAC when applied to an 
isotropic polymer mixture in solution. In practice, it is preferable to use high concentration 

in order to increase the signal-to-noise ratio and therefore minimizing counting time. In 
principle, this method can also be applied to semi-dilute and eventually to dilute solutions 

making the Zimm plot analysis less attractive. It also applies to polymers with more com- 

plicated architectures and to deuterated/ordinary polymers in non-solvent matrices such as 

polymer blends or networks provided that changing the deuterated fractions does not result in 

a change of the homogeneous nature of the mixture. Consider for example the case of a 
mixture of d-PS/FS/PVME on which small angle neutron scattering measurements were 
made in the following conditions: 

Md-PS = 1.95 x lo5 g/mole 
MPs = 1.9 x lO’g/mole 

MPVME = 1.59 x lo5 g/mole. 
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Fig. 10. The variation of the interaction parameter x,&, for d-PS/PVME and PWPVME as a 
function of l/T. These data are obtained using SANS and Flory-Huggins model.4 

These samples were considered in small angle neutron scattering experiments and are 

characterized by the following volume fractions: 

Sample 1: d-PS/PS/PVME 48.4%/Q%/.51.6% 

Sample 2: d-PS/PSfPVME 36%/12.9%151.1% 

Sample 3: d-PWPSIPVME 23.8%/25.6%/50.6% 

Figure 10 shows the variations of the Flory-Huggins interaction parameter between deut- 
erated and ordinary species as a function of l/T for two of these samples. These data are 

obtained by using the standard Flory-Huggins model. Figure 11 displays the three parts of the 
structure factors: P(q), Q(q) and S(q) as extracted using the high concentration method or the 

ZAC condition: one notes a slight difference between the structure factors extracted from 

different pairs of samples because the conditions imposed for the validity of the high con- 

centration method are not strictly satisfied. Furthermore, one may expect a slight deviation 

due to the fact that the assumptions of incompressibility of the mixture may not be rigorous. 

These aspects are discussed in more detail elsewhere.4 

3.6. d-PDMSIPDMSID-tolueneltoluene 

Various experiments using neutron scattering on mixtures of deuterated and ordinary 

polymers in mixtures of deuterated and ordinary solvents were reported under the ZAC. 
One of the objectives was to estimate the interaction parameter between deuterated and 
ordinary species xhd which, although small, could lead to significant effects in some cases. 
Another reason for examinining mixtures of deuterated and ordinary species is to see whether 
the parameter Xhd has a comparable value with the pure blend when the volume fraction of 
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Fig. 11. The variations of the form factor P(q), the structure factor S(q) and the inter-chain 
correlation function Q(q) for deuterated and ordinary mixtures of PS and PVME in the 

ZAC or high concentration method.4 

solvent is zero. As an example, from the data of ordinary and deuterated PDMS in toluene,a” 

it was possible to extract an interaction parameter Xhd ranging between 0.2 and 0.3% which is 
somewhat smaller than the value characterizing pure blends. Csiba et ~1.‘~ performed static 

and dynamic neutron scattering measurements on mixtures of d-PDMS/PDMS/d-toluene, 
toluene under the ZAC. The neutron scattering experiments were also used on binary mix-. 

tures of PDMS/d-toluene under similar conditions. A number of interesting observations were 

made. For the quatemary mixture of deuterated and ordinary PDMS and toluene under the 
ZAC, it was found that the scattered intensity was proportional to the single chain form factor 

P(q). This is an interesting system since it gives a direct access to the chain conformations and 
sizes. The scattered intensity for the binary system PDMS/d-toluene in the same concentra- 

tion range (semi-dilute) follows the Omstein-Zernicke equation which allows for the deter- 
mination of the static correlation length 5. Two major quantities describing the size of the 

polymers and the range of their composition fluctuations are deduced from such experiments. 

The dynamic scattering measurements give complementary information regarding the hydro- 

dynamic size of the chains and the range of hydrodynamic screening. The neutron scattering 
data for the quatemary mixture under the ZAC shows that the autocorrelation function is 

proportional to the single chain dynamic structure factor S(q, t). A fit of the neutron spin echo 

data with the calculated expression of Dubois-Violette and de Gennes5* including hydro- 

dynamic interaction indicated a good agreement. The relaxation frequency which is extracted 
from this fit corresponds to the motion of a single chain in the presence of hydrodynamic 

interaction. In the low range of q, this frequency is proportional to q* and the proportionality 
constant yields the diffusion coefficient in the Zimm model D,-N-0.5. The result can be used 

to measure the hydrodynamic radius R,, using the definition: 

D, =KBT/6n-vR,,. 
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As q increases, there is a deviation from the q2 behavior due to the internal relaxation modes 
of the chain. One finds I’(q)-q3 indicating that hydrodynamic interactions are important. 
Therefore, neutron spin echo measurements on PDMS and toluene mixtures under the ZAC 
are useful in extracting the properties of single chains in addition to Xhd. It allows for the 
investigation of internal dynamics of the chain by looking at the modes of relaxation in the 
high q range. The measurement of the auto-correlation function for the mixture of PDMS and 
toluene mixtures showed a single decay function. The relaxation frequency of this mode r(q) 
presents a crossover at a wavelength l/q* which is identified as the hydrodynamic correlation 
length E h. For q < q* = &I, I’(q) is proportional to q2 and the proportionality constant yields 
the cooperative diffusion coefficient. For q > q*, I’(q) scales as q3 describing the internal 
dynamics of the chain. The crossover q* between the q2 and q3 behaviors was determined 
quite accuratelys6 and the hydrodynamic correlation length q* = &’ was deduced. Similar 
investigations were made by Lapp et aL8’ on crosslinked networks of PDMS in toluene 
solutions using the neutron spin echo technique. However the latter experiments were not 
performed under the ZAC and will not be discussed here. 

3.7. Diblock copolymers of d-PS-PSld-tolueneltoluene 

Diblock copolymers in solution were also investigated under the ZAC. Both static scatter- 
ing properties and dynamic properties using the spin echo technique were investigated as a 
function of the wavevector q and the polymer concentration c. The first study was reported by 
Duval et a1.88 who considered the static scattering from a symmetrical diblock d-PS-PS in a 
mixture of Hz0 and D20 fulfilling the ZAC. The static intensity was measured for several 
concentrations in the semi dilute range where the concentration c was roughly between c* and 
lOc*. Within the experimental inaccuracies, all of the curves were the same and fit quite well 
with the simple theoretical function P1,2 - P as indicated earlier for the case of a 50/50 diblock 
copolymer. In order to include the effect of small departure from the symmetry conditions 
and the polydispersity of the samples, Duval et aLs8 used, instead of P112 - P, the more 
general expression: 

p, +pb - 2p,, + vpN(papb -p:b/{l +v&[ f+, + (1 -f)‘Pb +2f(l -f)Pabl> 

where the subscripts a and b refer to the d-PS and PS blocks, vcpN = 2A,Mc withA = 1.2 x 
10e3 cm3g-‘mole-‘, and M” = 10 800 gmole- ‘. The form factors were calculated using the 
standard Zimm-Schultz distribution function. The results are shown in Fig. 12 where the 
symbols represent the data for different concentrations and the continuous lines are 
theoretical predictions. 

Borsali et al. and Duval et ~1.~~ performed NSE and quasielastic light scattering on 
different types of diblock copolymers in solvents.89-9’ For example, Borsali et ds9 
performed NSE scattering measurements on the same copolymer at a single concentration 
c = 0.34 g/cc which is roughly 3~‘. The purpose of this preliminary study was to test whether 
one could observe the structural copolymer mode predicted by the RPA theory. To our 
knowledge, this work was the first to report the existence of the structural mode in the 
dynamics of block copolymers. Consistent with the theory, the intermediate scattering func- 
tion was found to decay following a single exponential and the relaxation frequency I’, was 
identified with the structural mode. 
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Fig. 12. The variations of the diffusion coefficient and the static scattering intensity as a 
function of q for a diblock copolymer d-PS-PS in toluene at different concentra- 

tions 88,8’,91 

Borsali et a1.89 also performed NSE measurements on the mixture of deuterated and 
ordinary homopolymers corresponding to the same conditions. Comparison of the 
copolymer and the homopolymer data showed a substantial difference that becomes more 
important as 4 decreases to zero. Whereas the normalized relaxation frequency I’,/q* 
increases substantially for the copolymer as q decreases to zero, the corresponding quantity 
for the homopolymer goes to a constant giving the diffusion coefficient D,. This was pre- 
dicted before by Akcasu et a1.42 and Benmouna et a1.92 who showed that the frequency tends 
to a constant as q goes to zero for the copolymer: 

I’1 =~2~,/P’r,kW’(q)l - 6W2D,[l +3q2Q2/81, 
whereas for the corresponding homopolymer, one has: 

rl =q2D,/P(q) - q2DI[1 +q2Rg2/3]. 

A more detailed investigation of the same copolymer was performed later for several 
concentrations by Duval et aL9’ using NSE. The time evolution of the dynamic scattering 
function was analyzed using the theoretical equation: 

Sk, W(q) =[(ud - hJ/212P1~2 -PT)/{~ - xhdkWJ1~2 -~7-)/2)e-rf’ 

+ [(ud + d/2 - d2{hI(1 + (v + xhd/2)cpNP~))e-rC’. (129) 

In writing this result, we did not set the smallness parameter Xhd to zero to have a more 
general result. In the ZAC, one has [(Q + ut,)/2 - u,] = 0 and the second term on the RHS 
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vanishes. This means that S(q,t) decays following a single exponential corresponding to the 
structural mode of the copolymer. As the concentration increases, both the intercept of 

FXq = 0) and the slope of I’$q’ decrease. The intercept with the q = 0 axis is inversely 

proportional to the friction coefficient 3: As expected, the data show that { increases with 

concentration. On the other hand, the generalized q dependent diffusion coefficient 

D,(q, c) = r1/q2 is found to decrease with concentration consistent with the theoretical pre- 

diction. Furthermore, one observes that the generalized mobility: 

kBT/&> c, = DI[p1/2(q) -p(q)] 

increases as q decreases consistent with the data of I’Xq). Both the latter quantity and p(q,c) 
shift to higher values as the concentration increases. Some of these features are illustrated in 

Fig. 12 which represents the variation of D, as a function of q for different concentrations. 

The normalized structure factor is also represented for one concentration along with the curve 

giving the theoretical prediction P&q) - P(q). It was mentioned earlier that the normalized 
scattering intensity remains approximately the same in the concentration range covered in 

these experiments. The fact that DI does not correspond to l/[P&q) - P(q)] means that the 
mobility p(q,c) is function of q which is a signature for the strong effects of hydrodynamic 

interactions. 

3.8. Diblock copolymer PS-PI in DOP 

T. Hashimoto et a1.35 performed small angle X-ray scattering experiments on symmetrical 

dibloc copolymers of PS-polyisoprene (PI) in dioctylphthalate (DOP). Their purpose was to 

study microdomain structures that are formed due to the spatial fluctuations in A-B diblocks 

as a function of the degree of polymerization N and the temperature T. Two molecular 

weights were considered (M = 3 x lo4 and 105). In the weak segregation limit where T is 

below T, and the concentration c is below cx, they observed that the system shows alternating 
microdomains with a period D = 2x/q,, where q,,, is the position of the first maximum in the 

scattering curve. The data were originally analyzed using a pseudo-binary model based upon 
the extension of the formula derived by Leibler in the case of pure diblock copolymers AB. 
This extension was made by replacing the interaction parameter in Leibler’s equation with 

xeff = x&,(p and the contrast factor by [(v, - vb)(p]‘. Their normalized scattering intensity 

becomes: 

WIKvn, - v,M2 =W[4/2 -Pl-2xeffN. 

In a subsequent paper, Hashimoto and Morig3 reconsidered the same X-ray data, analyzing 

them within this pseudo-binary assumption and the more general result given in eqn (66). 
Since they investigated a symmetrical diblock PS-PI in DOP in the ZAC, it appears clear from 
the theoretical discussions that the two methods based on the pseudo-binary description and 
the method of eqn (66) are the same. It is interesting to note that the variation of l/Z(q = qm) 
as a function of l/T is linear in the upper temperature range, and as T decreases, one observes 
a significant deviation similar to the one reported earlier for the critical behavior of homo- 
polymer blends. This means that the RPA should be improved for copolymers as well when T 
approaches the critical temperature for microphase separation. 
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3.9. d-DNA/d-TMAID,OIH,O and d-PSSId-TMAILWIHzO 

The neutron scattering technique has been quite useful in the study of structural and 

dynamical properties of polyelectrolyte solutions. 94295 It is a powerful technique for investi- 

gating the behavior of polyelectrolytes and shows in many aspects striking differences with 

their neutral counterparts. A particular example is given by the scattering peak in polyelec- 
trolytes which is similar to the peak observed in block copolymers. The particular features of 
polyelectrolytes are due to the long range character of the electrostatic interactions and these 

interactions lead to regions of exclusion surrounding polyions which are known as correlation 

holes. l4 The scattering properties are extremely sensitive to the ionic strength of the solution 
which is controlled by the concentration of added salt. In the presence of excess salt, the cloud 
of counterions surrounding each polyion forms a shield to electrostatic forces. The structural 

properties at distances exceeding the screening length k-’ are similar to those of neutral 

polymers. 

A polyelectrolyte solution is a typical example of a multicomponent mixture. In the 
simplest case of a single polyelectrolyte with added salt, one has four components: polyions, 

counterions due to the ionization of the polymer, counterions and co-ions of the added salt, 

and the solvent. In more complicated systems, one may have mixtures of polyanions and 
polycations. One could also use the deuteration technique to differentiate between the scat- 
tering of identical polyions. This technique is very useful in achieving a good characterization 

of the effects of electrostatic interactions. With the combined development of the small angle 

neutron scattering and the chemical labelling techniques, new prospects opened up for the 

characterization of polymer solution properties for both neutral and charged polymers. As we 
have pointed out earlier, one of the first experiments combining these advances for neutral 

and charged polymers were reported by Williams et al., Nierlich et al.96997 and by King et 

al. M-” In the early experiments, the main purpose was to extract the form factor of a single 
labelled chain in a semi-dilute solution of unlabelled but identical chains. In a subsequent 

investigation, Nallet et al. 98 reported measurements of the partial structure factors of polyions 

and counterions using selective labelling of these species. The polyelectrolytes investigated 
were NaPSS and DNA, the counterion was the TMA and the solvent either ordinary water or 

its deuterated counterpart with the purpose of achieving the maximum contrast in each case. 
Hayter et al.” reported NSE studies of NaPSS with added salt. 

More recently, neutron scattering experiments were found to be useful for investigating the 
structural properties of polyelectrolyte solutions under the ZAC.g4Yg5 In these experiments, 

one has a direct access to the charge-charge partial structure factor which is an important 
quantity describing the correlation between charged particles rather than between the labelled 

ones as it is usually the case for neutral polymers. 

More recently, new neutron scattering measurements were reported by Van der Maarel et 

al. 94295 on two different polyelectrolytes in the ZAC condition. The motivation for these 

measurements was to measure the various partial structure factors including the charge- 

charge structure factor for mixtures of polyions (deoxyribonucleic acid or DNA, sodium- 
polystyrene-sulfonate or Na-PSS) and counterions (tetramethylammonium or TMA). In the 
first paper, these aythors reported neutron data from DNA chains (146 base-pairs, contour- 
length L = 500 A) in the presence of TMA counterions in salt-free aqueous solutions of 
mixtures of D20 and H20. The partial structure factors of the DNA polyion, the TMA 
counterion and the cross term polyion-counterion were measured. In another series of 
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experiments, mixtures of ordinary and deuterated water at a given composition were used to 
achieve the ZAC and evaluate directly the charge-charge structure factor. Similar measure- 

ments were performed on NaPSS molecules. 
To analyze their data, Van der Maarel et al. developed a method which is entirely different 

from the one discussed here and we briefly outline the main steps of this method here. It is 

based upon the cylindrical cell model and the resolution of the Poisson-Boltzmann equation 

to obtain the distribution of counterions around the polyions. First, let us recall that the total 

scattering intensity can be written as 

m/c = (% - ~,)2&l,(q) + (UC - ~,)2&(q) + 2(hl- udu, - hL%&l) 
where the subscripts m, c and s stand for monomer, counterion and solvent, respectively. The 

DNA or the NaPSS molecules are modelled as charged rods with length L and radius rr. Each 

molecule is assumed to occupy a neutral coaxial cell of length L and radius r,,I1. The latter 
depends on the concentration as c = 1/[4nr2 cellu], u being the size of a monomer along the z- 
axis, i.e. u = L/N. The distance of closest approach of the counterion to the DNA molecule is 
rC which should be distinguished from the radius rp of the polymer. The monomer concen- 

tration at a distance r from the central axis denoted c,(r) is assumed to be a constant 

c, = 1/[4nria] for 0 < r -=c rp and zero for r > rp. The concentration of counterions in the 

radial direction c,(r) is obtained from the resolution of the Poisson-Boltzmann equation in 

cylindrical coordinates which can be made analytically. However, in this model, a severe 

assumption is made which consists of neglecting the correlations between different cells. 
Each cell is supposed to be free and experiences no interferences with its neighbors. The 

partial structure factors Sij(q) are calculated using the definition: 

with 

s&q) = =c ci(q)ci*(q)>; i = m, c 

ci(q) = s d3reiq.‘c,(r). 
V~~ll 

Vcell is the volume of a unit cell. The rest of the calculation consists of relatively simple 

manipulations of integrals in cylindrical coordinates and some of them have to be performed 

numerically. 
For more details concerning these calculations, the reader is referred to the papers of Van 

der Maarel et al. In Fig. 13 we have provided the variation of the polyion-polyion structure 

factor obtained from these experiments for the case of NaPSS.iee The symbols represent the 

data at two different concentrations as indicated in the figure caption. The dotted lines are 

obtained from the cylindrical cell model developed by Van der Maarel et al. which shows a 

good agreement only in the high q range above the location of the scattering peak. The poor 
agreement in the lower q range is probably due to the effects of inter-polyion correlations 
which are neglected in this model. The continuous lines in this figure are obtained from 
another model which was introduced in the first part of this paper. It is based on the RPA 
supplemented with a renormalized excluded volume parameter which is the addition of the 
bare excluded volume and the long range electrostatic interaction term. This model, although 

crude and simple, gives a good description of the data over the whole range of qs covered in 
the neutron scattering experiments. This is yet another example where the RPA gives surpris- 
ingly good results although it is not expected to be valid for systems with strong correlations 
as in the present case with polyelectrolyte solutions. 
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Fig. 13. The variation of the polyion-polyion structure factor S,(q)/cp as a function of q for 
PSS/TMA/H20/D20 mixtures and two concentrations of PSS: cp = 5.98 x lo-’ monomers/ 
A3 (0) and ~0 = 12.04 x lo-‘monomers/A3 (x). The continuous lines represent the General- 

ized RPA and the dotted lines are predictions of the cylindrical cell model. 94* ‘J@J 

4. CONCLUSIONS 

The examples presented above indicate how a simple model based on the RPA can be 
useful for describing scattering data relating to the structural and dynamical properties of 

various polymer systems. The diversity in the systems which can be described by this method 

allows one to have more confidence concerning validity in obtaining a qualitative or a semi- 

quantitative description of a given polymer system when important quantities such as the 

molecular weight, the concentration, the composition and the temperature are varied. This, of 

course, does not mean that the mean field description is sufficient under all circumstances and 

that there are conditions where the RPA should be extended or at least modified to improve 

the description of the polymer system especially in cases where strong fluctuations take place 
within the system and their effects become dominant in determining the scattering behavior 

of the polymers, For example, in their analysis of the data of the apparent radius of gyration 
for the PS/PMMA/bromobenzene mixture, Kappeler et al. 37 had to use a renormalized form 
of the RPA for ternary polymer solutions to improve the fit with the experiments. To the 

lowest order, the renormalized theory essentially replaces the parameters of the RPA by 

effective quantities which are functions of concentration and molecular weight. In this case, 

the renormalized theory yields a result of the same structure as the classical RPA where the 

concentration, the degree of polymerization, the chain radius of gyration and the AB excluded 

volume parameter are replaced by renormalized quantities. A comparison of the data with the 
two RPA methods shows that the renormalized version improves the fit substantially. 

We have indicated several examples where the RPA fails to describe the behavior of 
polymer mixtures or copolymers when one approches the critical region. In this region, 
it becomes clear that one should use more adequate descriptions such as the ones derived 
from the group renormalization theory. We have given earlier in this paper some examples 
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of this extension by considering the scaling behavior of the critical parameter and the 
critical concentration at which the system phase separates as a function of the average 
molecular weight of the polymers. Obviously, the mean field is unable to predict any of 
these scaling laws. However, it was interesting to observe that the numerical quantities 
obtained by extrapolation of the mean field results to the critical region yielded a reason- 
able agrement with the power laws predicted by the group renormalization theory. 

The ZAC is a unique condition where one can have direct access to valuable information 
on mixtures of homopolymers, copolymers and polyelectrolyte solutions. We have presented 
only a few examples which demonstrate the usefulness of this method. Since its application 
has been made only in a few cases and relatively recenty, we expect that it will be extended to 
other applications and possibly to other systems. For example, one could use it to evaluate the 
shrinking or swelling of homopolymers or copolymers when one enters the critical region. 
Indeed, the ZAC condition allows one to observe directly the single chain properties (static or 
dynamic) even in the presence of other chains. Moreover, for the case of polyelectrolytes, one 
can use this method to obtain more information on the charge-charge correlations carried by 
polyions which to our knowledge has not yet been carried out. 
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